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ABSTRACT 
 
 
 
The purpose of this thesis is to design a quantum well infrared detector with 

tunable spectral bandwidth. The tunability of the bandwidth is achieved by using the 

linear Stark effect for the ground to first excited state transition in an asymmetric 

quantum well. The position of the absorption peak is dependent on the direction of the 

electric field, and therefore it can be either blue or red shifted by changing the direction 

of the field. If two identical asymmetric quantum wells are arranged opposite each other, 

we can obtain both the blue and red shift for either direction of the bias. This method can 

produce broader peaks with tunable bandwidths proportional to the applied field. 

A program was developed to calculate the energy levels and wavefunctions of an 

arbitrary quantum well. The program was used to design a step quantum well capable of 

detecting infrared in the 8-12 mµ  band. The validity of the approach was verified by 

comparison with experimental data of Martinet et al. (Martinet, 1992), and found to have 

a good agreement. The designed step well was used to create a tunable bandwidth 

detector. The analysis showed that the bandwidth could be tuned to more than twice the 

peak width. The numerical simulation indicates the possibility of manufacturing a tunable 

bandwidth infrared detector by using step quantum wells. 
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I. INTRODUCTION 

A. INFRARED DETECTORS 

The human eye can detect only a small segment of the electromagnetic spectrum, 

the familiar visible band ranging from blue to red. Only objects hot enough to radiate at 

these frequencies and those that reflect visible light are visible to the eye. For the most 

part, however, objects are too cold to glow noticeably, making them undetectable at 

night. Yet their finite temperature does give them an infrared glow. It is this glow that 

night-vision infrared cameras strive to see. At the heart of an infrared camera is its “eye”: 

a two-dimensional array of detector pixels, with each pixel converting some of the 

incident photons to an electric signal.  

A Quantum Well Infrared Photodetector (QWIP) consists of a stack of quantum 

wells designed to detect infrared light (Levine, 1993). When the quantum well is 

adequately deep and narrow, its energy states are quantized. The potential depth and 

width of the well can be adjusted so that it has only two energy states: a ground state near 

the well bottom and a first excited state near the well top. In Figure 1.1, photoexcited 

electron transition from the ground state to the first excited state, where an externally 

applied voltage sweeps them out, producing a photocurrent.  

Conduction Band

E0

E0

•

•

Bound State

Photoelectron

Continuum

GaAs

AlGaAs

•

•

 

Figure 1.1  Electron excitation of a quantum well infrared photodetector. 

For two bound states in the quantum well, only photons having energies 

corresponding to the energy separation between the two states are absorbed, resulting in a 
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detector with a sharp absorption spectrum. If there is only one bound state in the well, the 

transition occurs between the bound state and the continuum, producing a broader peak 

(Levine, 1993). Designing a quantum well to detect light of a particular wavelength 

becomes a straightforward matter of adjusting the potential depth and width of the well to 

produce two states, separated by the desired photon energy. Impressive advances in the 

crystal growth and processing techniques of compound semiconductors such as gallium 

arsenide (GaAs ) and aluminum gallium arsenide ( AsGaAl xx −1 ) with different aluminum 

compositions allowed the fabrication of novel QWIP detectors (Levine, 1993) and arrays 

(Gunapala, 1996). 

 

B. PROGRESS OF QWIPS 

In the 1970's, InSb and HgCdTe were used to cover the 3-5 and 8-12 micrometer 

wavelength ranges. However, HgCdTe has some shortcomings due to difficulty in its 

material preparations, uniformity and reproducibility in the fabrication process. Other 

difficulties include mechanical softness, sensitivity to elevated temperature, and low yield 

for large array fabrications, which make such detectors extremely expensive. In order to 

fabricate low-cost detectors and overcome the above difficulties, detection using 

superlattices was suggested by Esaki and Tsu (Esaki, 1969). Extensive investigations, 

both theoretical (Coon, 1984 and 1985) and experimental (Smith, 1983), were a subject 

of considerable interest and were carried out until the first observation of strong 

intersubband transitions in /GaAs AlGaAs  quantum wells by West and Englash (West, 

1985). Since the problems associated with material preparation were avoided, this new 

development has received considerable attention. 

The first bound-to-bound quantum well infrared photodetector was demonstrated 

by Levine et al. (Levine, 1987). Because the photoelectrons had to tunnel out of wells 

from the bound excited state under large barriers, as illustrated in Figure 1.2(a), the 

responsivity was so low that the device had to work using a 2CO laser. This low 

responsivity led to the use of bound-to-continuum transitions, which were first proposed 

by Coon and Karunasiri in 1984 (Coon, 1984). Hasnain et al. (Hasnain, 1989) 
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demonstrated the first bound-to-continuum QWIP (see Figure 1.2b) to have a much 

higher responsivity, but also a small peak absorbance due to broad spectral width. 

 

•

•

•

•
o

o

•
•

(a) •

•

•

•

•
•

o

o

(b)
 

Figure 1.2 Schematic diagrams showing (a) bound-to-bound and (b) bound-to-
continuum electron transfer. 

 

Several configurations of the QWIP structure have been reported based on 

transitions from bound-to-extended states (Levine, 1990), bound-to-quasi-continuum 

states (Levine, 1991), bound-to-quasibound states (Gunapala, 1996), and bound-to-

miniband states (Yu, 1991). These configurations provide good detection performance 

because in all designs, electrons in the ground state do not flow in response to the bias, 

while electrons activated to the excited state yield photocurrent under low bias. Several 

structural optimizations have also been made to improve the performance of QWIPs such 

as dark current reduction from thermionic emission (Gunapala, 1996).  

 

C. PURPOSE OF THIS THESIS 

The goal of this research is to design a quantum well detector with a tunable 

spectral bandwidth. The tunability of the bandwidth is achieved by using “the linear Stark 

effect” in an asymmetric quantum well (Yuh, 1989). For example, in the step quantum 

well shown in Figure 1.3(a), the amount of Stark shift from the ground to first excited 

states transition is approximately 
2

eFa
, where F  is the electric field strength, and a  is 

the step width (Yuh, 1989). 
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b

a

(a) (b)

2E

1E

2E

1E

 

 Figure 1.3 Schematic diagrams showing an (a) asymmetric step quantum well and a 
(b) designed step quantum well structure for bandwidth tuning. 

 

As previously mentioned, the position of the absorption peak is sensitive to the 

direction of the electric field and can be either blue or red shifted by changing the 

direction of the field (Mii, 1988). If two wells are arranged as in Figure 1.3(b), both red 

and blue shifts can occur at the same time producing an absorption peak with a tunable 

bandwidth.  

In the following chapter, we will present a detailed analysis of energy levels in a 

step quantum well, including external electric field effects. In addition, the absorption 

coefficient under applied field will be calculated using a step approximation to the linear 

potential. Finally, in Chapter 3, we will present an optimized device structure to achieve 

tunable bandwidth detection. 
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II. THEORETICAL BACKGROUND 

A. INTRODUCTION 

In the following sections, we will develop the theoretical tools necessary to 

analyze quantum well energy levels as a function of applied bias for an asymmetric 

quantum well. The Schrödinger equation is solved numerically using the transfer matrix 

approach (Wang, 1989).  The effect of the electric field on the energy levels will be 

incorporated by the “staircase” approximation of the linear potential.  

 

B. TRANSFER MATRIX METHOD 

In the case of an infinite square quantum well, the Schrödinger equation is given 

by   

 
2 2

* 2 1,2,3,...
2

n
n n

e

d
E n

m dz
Ψ

− = Ψ =
h

 (2.1) 

where z is the growth direction, n  is the quantum number, h  is the reduced Planck’s 

constant, *
em  is the effective mass of the electron, and nΨ  and nE  are the wavefunction 

and energy in the thn  energy level, respectively. The wave function ?  must also satisfy 

boundary conditions across a potential step since the probability current across a 

boundary should be continuous.  

In light of the above the conditions and the fact that the wave functions go to zero 

at the boundaries ( 0,z L= ) and the electron stays within the well, we can obtain the 

energy and wavefunction of the quantized energy states as  

 
2 2

2
* 2 1,2,3,...

2n
e

E n n
m L

π
= =

h
 (2.2) 

and 

 ( ) sin 1,2,3,...n

n z
z A n

L
π Ψ = = 

 
 (2.3) 
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where L  is the width of the quantum well. Taking the origin at the left side of the well as 

shown in Figure 2.1, the wave function can then be normalized over the total distance 

+∞<<∞− z  as follows: 

 * ( ) ( ) 1n nz z dz
∞

−∞

Ψ Ψ =∫ , (2.4) 

which gives the normalization constant A =
L
2

. Finally the normalized wavefunction is 

given by 

 
2

( ) sin 1,2,3,...n
n z

z n
L L

π Ψ = = 
 

 (2.5) 

∞
V(z)

∞

z
E1

4E1

9E1

16E1

Energy

0 L

 
Figure 2.1 Infinite square well potential and energy levels. 

 

There are many techniques available to calculate the energy levels and the wave- 

functions of finite quantum well structures, each having advantages and disadvantages. 

The deciding factor on which method to use depends on, to some extent, the structure 

itself. For example, the variational approach yields simple results for the ground state but 

has difficulty finding the excited states. The solution of the Schrödinger equation for a 

finite square quantum well can be found by matching boundary conditions (Weisbuch, 

1991). However, when the number of interfaces is large, this method becomes 
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cumbersome (Choi, 1997). With the help of a computer, the transfer-matrix method is a 

multipurpose approach in obtaining the energy states and the corresponding wave 

functions of a structure with an arbitrary potential profile. In the following section, the 

transfer matrix method will be discussed. 

A heterostructure is made from layers of materials having different bandgaps. For 

example, in a typical square quantum well, a layer of GaAs  is surrounded between the 

two thicker higher bandgap layers of AsGaAl xx −1 . The well width is controlled by 

adjusting the GaAs  layer thickness while the potential depth is controlled by adjusting 

the Al  composition in the barrier layers. Again the application of the boundary 

conditions leads to the quantized energy values nE  and wave functions ( )n zΨ .  

In the transfer matrix method, a plane wave is assumed to be incident from the left 

of the structure as shown in Figure 2.2. In each layer the wave function can be written as 

a linear combination of the forward ( ikz
nA e ) and backward ( ikz

nB e− ) traveling plane 

waves. A matrix can be set up using the boundary conditions at each interface of the 

quantum well structure to connect the wavefunctions between the adjacent regions 

(Hutchings, 1989).  

Incoming Wave

( )V z

*
1m

*
1nm −

*
2nm −

*
3m*

2m *
nm

0 1z nz1nz −2nz −3z2z  

Figure 2.2 Arbitrary multi- layered potential well structure.  
 

For the arbitrary quantum well structure shown in Figure 2.2, the wave function 

for the thn  region can be written as 
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 ( ) 1,2,.....,n ni k z ik z
n n nz A e B e n Nψ −= + =  (2.6) 

where nA and nB are arbitrary constants, 

 
*

2

2
( )n

n n

m
k E V= −

h
, (2.7) 

*
nm  is the electron effective mass in the thn  layer and the thickness of the thn  layer 

nnn zzd −= +1 . Furthermore, E  is the electron energy, which can either be higher or 

lower than the highest potential in the structure. The boundary conditions at the thn  

interface give (Robinett, 1997) 

 

1

1
* *

1

( ) ( )

( ) ( )1 1

n n n n

n n n n

n n n n

z z

d z d z
m dz m dz

ψ ψ

ψ ψ

+

+

+

=

= ⋅
 (2.8) 

Thus, the following matrix, nM , can be obtained to connect the coefficients in the thn  

layer to that of the ( 1)thn +  layer as follows: 

 1

1

1,2,..., 1Mn n

n n
n

A A
n n

B B
+

+

   
= = −   

   
 (2.9) 

where 

 
( ) ( )

( ) ( )

1 1

1 1

( ) ( )

( ) ( )
,

1
M

2

1 1

1 1

n n

n

n n

n n n nn n

n n n nn n

i k k z i k k z

i k k z i k k z

e e

e e

γ γ

γ γ

+ +

+ +

− − +

+ − −

 
 
 
 
  

+ −

− +
=  (2.10) 

and      

 
*

1
*

1 1

n n
n

n n

k m
k m

γ +

+ +

= , (2.11) 

In Equation (2.10) nz  is the spatial coordinate of the interface between thn  and ( 1)thn +  

layers. 

This model can be extended to the multi- layered quantum well structure and by 

using the above relationship, the coefficients of the wavefunctions for the first and last 

layers are related by 

 1 1 11 12 1
1 2 1

1 1 21 22 1

...N
n n

N

A A A m m A
B B B m m B−

         
= = =         

        
M M M M M . (2.12) 
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If the two outer layers have higher potentials than the energy of the particle (i.e., if 

E V< ), then there will be bound energy states. In this case, we can set the coefficient 

0=NB , because it would become infinite as z → ∞ . In the same manner, 1A  can be set 

to zero for the region 0z < . Under these conditions, Equation 2.12 reduces to 

 11 12

21 22 1

0
0

n m mA
m m B

    
=     

     
. (2.13) 

In order to satisfy the Equation 2.13, we must have  

 22 ( ) 0m E = . (2.14) 

A Matlab program was developed to plot 22 ( )m E  versus E  and identify the points where 

22m  is zero. For example, Figure 2.3 shows the calculated 22m  as a function of E  for a 

square potential well. The calculated bound state energies and wavefunctions are shown 

in Figure 2.4. 

Figure 2.3 Plot of 22 ( )m E  versus E for a square potential well with L  = 110 Å, 

1 3V V= = 0.75 eV and 2 0V = eV . 
 

E1 

E2 

E3 

E4 
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Figure 2.4 Energy levels and wavefunctions of the quantum well described 
 in Figure 2.3. 

 
 

C. INTERSUBBAND TRANSITIONS 

In a quantum well structure made of semiconductors, the wavefunction consists of 

both envelope and Bloch functions. Thus, not only the transitions between Bloch 

functions but also between the envelope states are allowed within the structure. The 

transitions between Bloch states correspond to interband transitions, while transitions 

between envelope states correspond to intersubband transitions. For a given interaction 

potential pV , the transition rate W  can be obtained from the Fermi’s golden rule (Coon, 

1984) 

 ( )22
| | | |f p i f i

f

W V E E
π

δ ω= < Ψ Ψ > − −∑ h
h

, (2.15) 
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where  and i fE E  are the electron energies in the initial and final states, respectively, and 

ωh  is the incident photon energy. The interaction potential energy, pV , in the dipole 

approximation is given by (Coon, 1984)  

 *

1/2

0

ˆ
2e

p
r

pe IV
m n cε ω

→ 
  
 

= ⋅eh
, (2.16) 

where e  is the electron charge, I  is the incident photon flux, c  is the speed of light, 0ε  

is the electric permittivity, rn  is the index of refraction, ω  is the angular frequency of the 

incident photon, ê  is the unit vector of the photon polarization direction, and p
→

 is the 

momentum operator, 

 i i j k
x y z

p
→ → → → ∂ ∂ ∂

= − + + ∂ ∂ ∂ 
h . (2.17) 

In the case of a quantum well, the wavefunctions for the initial and final states of 

transition can be written as  

 

1

( ) ( )

( ) ( ) ,

i

i i i

i

f f f

A

A A

eu z

eu z

ρ

ρ

ψ

ψ

→

→

⋅

⋅

Ψ =

Ψ =

k

k

r

r

 (2.18) 

where iu and fu are the Bloch functions of the initial and final states, respectively, 

ik
→

and fk
→

are the initial and final wave vectors in the xy  plane, r  is the 3-D position 

vector, ρ
→

 is the position vector in the xy  plane, iΨ  and fΨ  are the corresponding 

envelope functions, and A  is the area of the structure. The trans ition matrix element in 

Equation 2.15 can be evaluated as (Coon, 1984) 
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| | ( ) ( ) | | ( ) ( )

( ) | | ( ) ( ) | ( )

( ) | | ( ) ( ) | ( ) .

f i

f i

f i

i i

p pi i if f f

i i
p i if f

i i

p i if f

A A

A A

e eV u z V u z

u e V u e z z

e ez V z u u

ρ ρ

ρ ρ

ρ ρ

ψ ψ

ψ ψ

ψ ψ

→ →

→ →

→ →

⋅ ⋅

⋅ ⋅

⋅ ⋅

< Ψ Ψ >=< >

=< >< >

+ < >< >

k k

k k

k k

r r

r r

r r

 (2.19) 

In the above expression, we assume that the envelope functions vary slowly compared to 

the Bloch functions. The integration over the x  and y coordinates gives i fk k
→ →

= . The first 

term of Equation 2.19 is zero because of the fact that the Hamiltonian used to obtain iψ  

and fψ  is Hermitian. In addition, the Bloch functions are normalized to unity. Thus, the 

intersubband transition matrix element reduces to (Coon, 1984) 

  

 1/2

*
02

| | ( ) | | ( )

( ) | | ( ) cos ,
e r

p pi if f

z if
q I
m n

V z V z

z P z
ε ω

ψ ψ

ψ ψ θ 
 
 

< Ψ Ψ >=< >

= < >h
 (2.20) 

where θ  is the angle between the photon polarization angle and the z  axis and zP  is the 

momentum operator in the z  direction.  The strength of the transition is usually 

characterized by the oscillator strength, which is defined as   

 
* 2

2 1
2

2 ( )
| | ,e

f i
m E E

f z
−

= Ψ Ψ
h

 (2.21) 

where  

 | |f i f iz z dz
∞

−∞

Ψ Ψ = Ψ Ψ∫ . (2.22) 

             

D. INTERSUBBAND TRANSITION SELECTION RULES 

The first selection rule of intersubband transition is the parity selection rule. From 

Equation 2.20, it is found that the parity of the final state has to be different from that of 

the initial state in order to obtain a non-zero transition matrix element. This means that 
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the intersubband transitions in a square quantum well can occur only from odd states to 

even states or vice versa. For example 1 2→  or 2 3→  transitions are allowed whereas 

1 3→  is not allowed. Figure 2.5 shows schematically the parity selection rule of the 

intersubband transitions in a square potential well. However, the symmetry of a square 

well can be broken by applying a relatively strong electric field, making the normally 

“forbidden” transitions become allowed (Mii, 1990). 

Vbarrier

E2

E1

E3

0 a

x

 

Figure 2.5 Square quantum well showing allowed and forbidden transitions. 

The second selection rule is the polarization selection rule. Since the potential 

modulation of a quantum well structure is only in one direction, the z direction, 

intersubband transition will not occur when the photon polarization is perpendicular to 

the z direction. This can be understood by considering the cosθ  term in Equation 2.20. 

This unique polarization selection rule is an important characteristic and can be used for 

the identification of the intersubband transition (West, 1985). In order to obtain a strong 

intersubband transition, the photon polarization has to coincide with the growth direction 

(i.e., 0θ = ).  

For an asymmetric quantum well (see Figure 2.6), the dipole matrix elements of 

transitions for both odd-to-odd and even-to-even quantum numbers do not vanish, since 

the eigenfunctions of these energy states are not eigenfunctions of the parity operator.   
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Vbarrier

E 2

E 1

E 3

0 a b

Vs tep

 

Figure 2.6 Asymmetric quantum well with allowed transitions. 
 

In addition to allowing intersubband transitions between any low states, the 

asymmetric well structure also gives linear Stark shift (Yuh, 1989). This can be utilized 

for tuning the detection wavelength (Martinet , 1992). 

 

E. INTERSUBBAND ABSORPTION COEFFICIENT 

The absorption coefficient in quantum well devices is one of the most important 

factor in the design of the quantum structures and is proportional to the amount of 

incident light that is absorbed in the structure. The absorption coefficient depends upon 

the material characteristics of the respective semiconductor. For example, the high 

refractive index of a semiconductor such as GaAs , (n = 3.3), causes that light incident on 

the surface of an epitaxial layer structure is refracted towards the normal, for example, 

and away from the required orientation. Efficient coupling of the intersubband transition 

can be achieved by a number of optical techniques, including the use of a beveled edged 

device (Levine, 1987), diffraction gratings (Hasnain, 1989), and combined diffraction 

gratings and waveguides (Andersson, 1992).  

In addition to absorption, it is important to extract the photoexcited carriers out of 

the quantum well. This is achieved by placing the excited state near the top of the barrier 

as shown in Figure 2.7. In the case of the bound-to-continuum transition (see Figure 

2.7a), the excited state is located just above the barriers, while for a bound-to-quasi 
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bound structure (see Figure 2.7b) the excited state is just below the barrier. The latter 

structure provides lower leakage current due to the higher barrier height for the same 

detection wavelength.  
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Figure 2.7 Bound-to-continuum (a) and (b) bound-to-bound transitions. 
 
For the bound-to-bound transitions, since there is only one final state, the 

summation over the initial states in Equation 2.23 gives the number of the electrons in the 

ground state,   

  
 dN N LA= . (2.23) 

Here, N  is the number of electrons in the initial state, dN  is the three dimensional 

doping density, and  and L A  are the well width and area of the quantum structure, 

respectively. The delta function in Equation 2.15 is usually replaced by the normalized 

Lorentzian function to take into account the spectral line width given by (Yariv, 1997) 

  

 
( ) ( )22

1
( )

2
2f i

g
E E

ω
π ω

Γ
=

Γ− − +
h

h
, (2.24) 
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where Γ is the full width at half the maximum. This is usually obtained experimentally 

and is about 10-20 meV for intersubband absorption. The transition rate, found using the 

interaction potential and the momentum operator is given by 

 
( )

2 3
2

2*
0

( )
| | | | ( )

( )
d

Bound Bound f i

e r

N IAL e d
W g

dzm n c
ψ ψ ω

ω ε
→ = < >

h
h

h
. (2.25) 

For the bound-to-continuum transitions, the number of initial states is still N  

with energy iE , as in the case of bound-to-bound states. However, the summation over 

the final states requires multiplication by the joint density of states ( )Eρ , which is 

defined as 

 
2

( )
2

zdk
E dE

l

ρ
π

=
 
 
 

. (2.26) 

For energy states separated by the incident photon energy, the above equation can be 

reduced to  

 
*

2

2
( )

2 ( )
b

f b

ml
E

E V
ρ

π
=

−h
. (2.27) 

In this expression, l  is the length of the region used for the normalization of the extended 

state wavefunction, *
bm  is the electron effective mass in the barrier, and bV  is the 

potential height of the barrier.  The transition rate for bound-to-continuum states is then 

defined as 

 
( )

2 2 *
2

2 2*
0

( ) 2
| | | | .

( ) ( )2
d b

Bound Continuum f i
f be r

N IAL e l m d
W

E V dzm n c
ψ ψ

ωε
→ = < >

−
h

h
 (2.28) 

This model of the bound to free intersubband absorption is one where the line width is 

due only to the variation of the joint density of states. The absorption coefficient ( )α ωh  

can be obtained by using both the transition of the matrix element and the transition rate 

as follows: 

 
number of transitions per unit volume and time

( ) , ( )
incident photon flux

W
AL
I

α ω α ω= = ⋅h h  (2.29) 

Thus, the absorption coefficients for the bound-to-bound and bound-to-continuum 

transitions are given by 
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( )

( )

2 3
2

2*
0

2 2 *
2

2 2*
0

( ) | | | | ( )
( )

2
( ) | | | | .

( ) ( )2

d
Bound Bound f i

e r

d b
Bound Continuum f i

f be r

N e d
g

dzm n c

N e l m d
E V dzm n c

α ω ψ ψ ω
ω ε

α ω ψ ψ
ωε

→

→

= < >

= < >
−

h
h h

h

h
h

h

 (2.30) 

The length term, l , which appears in the bound-to-continuum transition, is eliminated by 

the 1
l  term in the normalized final state wave function (assuming it is confined to a 

length, l ). As an example, absorption coefficients for the bound-to-bound and bound-to-

continuum situations for the quantum well shown in Figure 2.8 are depicted in Figures 

2.9 and 2.10, respectively. 

 
Figure 2.8 Energy levels of the 0.40 0.60Al Ga As / 0.20 0.80Al Ga As /GaAs / 0.40 0.60Al Ga As  

quantum potential well. 
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Figure 2.9 Bound-to-bound absorption coefficient for the quantum potential well 

given in Figure 2.8 with meV20=Γ . 
 

Figure 2.9 shows the absorption versus photon energy for bound-to-bound 

transitions. There is a sharp rise in the absorption spectrum when the photon energy is 

equal to the difference between the bound state energies in the quantum well struc ture. 

The width of the curve depends on the finite lifetime of the excited electron, which was 

modeled using the Gaussian spectral density function. 
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Figure 2.10 Bound-to-continuum absorption coefficient for the quantum well 

 in Figure 2.8. 
 

Similarly, Figure 2.10 shows the absorption coefficient versus the photon energy 

for the case of bound-to-continuum transitions. The sharp rise in the spectrum 

corresponds to a photon energy equal to the difference between the bound state energy 

and the energy at the top of the quantum well where the extended continuum states begin. 

As the photon energy increases above this threshold value, absorption increases until 

reaching a peak value corresponding to the energy above the top of the barrier. At very 

high energies there is a slow decrease of ( )α ωh  since the density of states drops as the 

energy is increased.  

As previously mentioned, our goal is to design a detector with tunable bandwidth. 

The most convenient way to do this is by using bias as the tuning parameter. As a result, 

it is important to study the effect of bias on the energy levels as well as on the absorption. 
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F. EFFECT OF ELECTRIC FIELD ON QUANTUM WELLS 

When a uniform electric field is applied along the z  direction (growth direction), 

the quantum well structure will tilt in the opposite direction of the electric field and the 

change due to this tilt will affect the energy states of the quantum well. The potential 

experienced by an electron in the quantum well is given by 

 ( ) nV z V eFz= + , (2.31) 

where nV  is the potential height of the thn layer of the quantum well, e  is the electron’s 

charge, F , measured in )/( mV , is the electric field strength , which is applied along the 

growth direction. A square quantum well in the presence of an external bias is shown in 

Figure 2.11. 

V barr ier

z

F

1E
2E

3E

0F >

0F =

 

Figure 2.11 Schematic representation of a square quantum well under an applied bias. 
 

By increasing the electric field, the lowest energy state 1E  in the quantum well 

will decrease in energy and fall into to the triangular potential formed at the bottom of the 

well. On the other hand, the excited states are less affected by the external electric field. 

However, for low electric field strengths, the shifting of all the energy levels are the same 

due to the symmetry of the square well. Thus, there is no appreciable Stark effect. This 

can be altered using an asymmetric quantum well, which is equivalent to a square well 

under a high electric field. 
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1. Transfer Matrix Approach for Quantum Wells Under Applied Bias 

Previously, we have discussed the calculation of the energy levels and 

wavefunctions of arbitrary quantum wells using transfer matrix approach. However, this 

approach cannot be used directly due to the linear variation of the potential energy under 

an external bias. 

One way to overcome this problem is to approximate the linear potential due to 

the bias shown in Figure 2.12, with a series of steps or “staircase” as shown in Figure 

2.13. The advantage of this approach compared to the use of Airy functions is that, it can 

be used at low field strengths, whereas Airy functions tend to diverge at low bias 

voltages, making the numerical analysis much more difficult (Brennan, 1987).  

 

Figure 2.12 Step quantum well with applied bias of 5 mV µ/ . 
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Figure 2.13 The stair case approximation of the potential shown in Figure 2.12. 

The Schrödinger equation for an electron in the quantum well in the presence of 

an electric field F  can be written as 

 
2 2

* 2 ( ) 0
2 n n n

n

d
E V qF z

m dz
− Ψ − − − Ψ =

h
, (2.32) 

where E  is the energy of the electron in the layer and nV  and *
nm  are the potential and the 

effective mass in the thn layer, respectively. In order to apply the transfer matrix relations 

it is necessary to know the boundary conditions at the end points. For bound states, we 

can use the same approach as used in the zero bias case. For the continuum states we can 

assume that the electron is incident from the left side of the potential shown in Figure 

2.13, and which gives 0NB = . Thus, starting from 1

1

A

B
 
 
 

, all the unknown 

n

n

A

B
 
 
 

coefficients can be progressively calculated, end ing with the coefficient 
0

NA 
 
 

. 

Therefore the electron wave functions can easily be obtained because all the coefficients 

are produced when 1A  is known (Hutchings, 1989).  



23 

Figures 2.14 (a) through 2.14 (d) show the potentials and eigenenergies calculated 

using the “staircase” approximation for external bias varied from 0 to 5 mV µ/ . In this 

way, we can observe the change in the energy states as a result of the applied electric 

field. Table 2.1 shows the change in bound state energies due to the external applied bias 

in the quantum well.  

 
(a)                        (b) 

 
 (c)        (d) 

Figure 2.14 Effect of electric field on the bound state energies of a step quantum well 
for the following field strengths: (a) 0=F , (b) 1 /F V mµ= , (c) 3 /F V mµ=  and 

(d) 5 /F V mµ= . 
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Energy States 
Zero  

Biased Well 
(meV) 

1 mV µ/  
Biased Well 

(meV) 

3 mV µ/  
Biased Well 

(meV) 

5 mV µ/  
Biased Well 

(meV) 

E1 41 
47 
 

?E=6 

61 
 

?E=20 

74 
 

?E=33 

E2 147 
153 

 
?E=6 

164 
 

?E=17 

175 
 

?E=28 

E3 247 
250 

 
?E=3 

256 
 

?E=9 

-- 
 

Continuum 

Table 2.1 Bound state energies as a function of bias. 
 
2. Intersubband Absorption Under an Applied Electric Field 

The intersubband absorption peak position will shift in energy with changing 

electric field due to the shift of the energy levels. At a low bias, this effect is especially 

pronounced in asymmetric quantum wells as compared to symmetrical wells. Figure 2.15 

shows the calculated absorption coefficient as a function of bias across the well using 

Equation 2.30. The matrix element in Equation 2.30 is evaluated using the wavefunction 

under the applied bias.  
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Figure 2.15    Absorption coefficient as a function of bias across the step quantum well 
structure. 

 

The strength of absorption is found to increase with increasing electric field, 

mainly due to the stronger matrix element. The asymmetry observed between positive 

and negative biases is due to the fact that under forward bias (negative), the first excited 

energy level moves toward the ground state and hence the transition energy is reduced, 

while under reverse bias (positive) the opposite is true and the transition energy is 

increased. 

 

G. COMPARISON WITH EXPERIMENT 

In order to verify the validity of the “staircase” model for a quantum well under 

bias, we have analyzed a step quantum well structure employed by Martinet et al. 

-3 /V mµ  

3 /V mµ   

0 /V mµ   
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(Martinet, 1992) for the study of bias dependent photocurrent.  The parameters of the 

structure used in Martinet’s experiment are shown in the Table 2.2. 

Entered Experimental Data 

Layer  
and Thickness Concentration 

AlGaAs (barrier) 
36.5 nm  

0.40 

AlGaAs (step) 6.7 0.20 

GaAs 
3.2nm  -- 

AlGaAs (barrier) 
36.5nm  0.40 

Table 2.2 Parameters of the step quantum well structure used by Martinet et al. 
(Martinet, 1992). 

 

Figure 2.16 shows the step well structure and the calculated energy levels using 

the Matlab program developed using the “staircase” approximation for the same structure 

used by Martinet et al. (Martinet, 1992). 
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Figure 2.16    Calculated energy levels of the 0.40 0.60Al Ga As / 0.20 0.80Al Ga As /GaAs step 

quantum well. 
 

The calculated value of 2 1E E−  of 107 meV is close to the zero-field absorption 

peak of 115 meV  observed experimentally. The experimentally observed shift of the 

absorption peak (Martinet, 1992) for different electric fields in the step quantum well is 

shown in Figure 2.17. 
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Figure 2.17    Normalized responsitivity of the asymmetric step quantum well under 
different positive and negative biases. The peak shift is nearly four times the spectral 
width. Zero field absorption (bold line) is included as a reference, (Martinet , 1992). 

 

Figure 2.18 Plot of bound-to-bound, 1 2→  normalized absorption transitions with 
20 meVΓ =  done with the Matlab program. 

-45 kV/cm 

25 kV/cm 

40 kV/cm 

0 kV/cm 
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Figure 2.18 shows the calculated absorption coefficient (normalized) for the same 

set of bias voltages as in the experiment. The experiment shows that the peak position 

changes from 93 meV to 145 meV  when the bias is changed from 42 /kV cm  to 

40 /kV cm− . The calculated value of the peak changes from 86 meV  to 125 meV  for 

the same bias values. The experimental and calculated peak shifts amount to 52 meV and 

39 ,meV  respectively. The difference between the two values may be due to the 

comparison of the photocurrent  versus the absorption coefficient. Nonetheless, the results 

show that the model predictions are in reasonably good agreement with the experimental 

observation, indicating the accuracy of the calculation. 

 
 
H. SUMMARY 

In this chapter the transfer matrix method was derived for an arbitrary potential 

well. This technique was employed to calculate the energy levels and wavefunctions of a 

step potential well. Intersubband transition selection rules in both symmetric and 

asymmetric potential wells and how they affect the design of the detector were also 

discussed. Another significant design parameter, the absorption coefficient, was 

calculated for both symmetric and asymmetric wells. External bias and its effects on the 

quantum wells, energy levels, and absorption coefficients were discussed. The use of 

“staircase” approach to calculate the absorption coefficient is found to be in good 

agreement with the experimental observation. In the following chapter, the design of the 

tunable bandwidth quantum well detector will be discussed.       
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III. DESIGN OF A TUNABLE BANDWIDTH AlGaAs/GaAs STEP 
QUANTUM WELL INFRARED PHOTODETECTOR 

A. INTRODUCTION 

As discussed in Chapter II, intersubband absorption results from transitions 

between the energy levels of a quantum well formed within the conduction or valence 

band. This section presents detailed calculations of energy level, wavefunction and 

oscillator strength in an /AlGaAs GaAs  step well structure. The use of an electric field to 

tune the detection bandwidth will also be described. First, however, the calculations of 

effective mass and barrier height as a function of Al  composition in the 1x xAl Ga As−  layer 

will be discussed.  

 

B. EFFECTIVE MASS AND BARRIER HEIGHT CALCULATION 

Normally the band offsets of the conduction band ( )cE∆  and valence band ( )vE∆  

of 1 /x xAl Ga As GaAs− quantum well structures can be calculated by using the total band 

offset ( )gE∆ . Accepted values of conduction and valence band offset ratios are as 

follows (Meyer, 2001): 

 
0.6

0.4 .
c g

v g

E E

E E

∆ = ∆

∆ = ∆
 (3.1) 

The bandgap of 1x xAl Ga As− , ( )gE x , can be approximately calculated using Vegard’s 

Law as (Adachi, 1994)  

 ( ) ( )( ) (1 )g g AlAs g GaAsE x xE x E= + −  , (3.2) 

where x  is the Al molar fraction and ( )g AlAsE  and ( )g GaAsE  are the bandgaps of AlAs and 

GaAs , respectively, at the Γ − point. 

Using the experimentally observed band gaps of (2.671 )AlAs eV and 

(1.424 )GaAs eV , the band gap of 1x xAl Ga As−  at the Γ − point is given by (Singh, 1993) 

 ( ) 1.424 1.247gE x x eV= +  (3.3) 
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The graph in Figure 3.1 shows the band gap of the 1x xAl Ga As−  layer as a function of 

Al composition where the composition x  changes from zero to one hundred percent. 

 

 
Figure 3.1 Energy gap at −Γ point as a function of Al . 

 
1.  Effective Mass Calculation  

The effective mass of the 1x xAl Ga As−  alloy can also be found using Vegard’s 

Law as 

 * * *
( ) ( ) ( )

1 1

AlGaAs AlAs GaAs

x x
m m m

−
= + . (3.4) 

The inverse relationship is due to the fact that the effective mass and energy are inversely 

related, where  

 
*
( )

*
( )

0.15

0.067
AlAs e

GaAs e

m m

m m

=

=
 (3.5) 

(1 )x xAl Ga As−  
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are the Γ point effective masses of AlAs  and GaAs , respectively(Singh, 1993). 

Figure 3.2 shows the plot of effective mass as a function of Al composition. 

 
Figure 3.2 Effective mass vs. molar fraction of Al . 
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IV. FINAL DESIGN OF THE STRUCTURE 

In the following, we will discuss the design of a tunable bandwidth detector with 

center wavelength near 8.5 mµ . The most convenient material system is /AlGaAs GaAs  

due to their lattice match and to mature growth technology. In order to demonstrate the 

band tuning capability, a bound-to-bound transition in a step quantum well will be used. 

Figure 4.1 shows a step well with peak absorption near 8.9 mµ . This structure was 

optimized to achieve a relatively large absorption coefficient with peak absorption 

between 8 and 9 mµ . The first excited state lies about 24 meV below the barrier edge. 

 

Figure 4.1 Optimized quantum well showing the ene rgy levels, centroids, and 
lambda. 

 

Figure 4.2 shows the calculated absorption coefficient of the structure for a set of positive 

and negative bias voltages. 
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Figure 4.2 Absorption coefficient for bound-to-bound intersubband transition for the 
step well shown in Figure 4.1 for a set of bias voltages. 

 

Table 4.1 shows 1E , 2E , and oscillator strength, f , for the quantum well structure given 

in Figure 4.1 under various applied biases. 

1 /V mµ  2 /V mµ  3 /V mµ  Energy states 
and oscillator 

strength 

Zero  
Biased Well V -V V -V V -V 

1 ( )E eV  

 
0.0766 

 
0.0833 0.0767 0.0926 0.0792 0.1017 0.0818 

2 ( )E eV  0.2160 0.2184 0.2220 0.2211 0.2275 0.2224 0.2334 

f  0.1343 0.1146 0.1523 0.0960 0.1831 0.0766 0.1798 

Table 4.1 Energy states and oscillator strengths under different biases for the 
quantum well structure shown in Figure 4.1. 

 

-20 kV/cm 

-10 kV/cm 

0 kV/cm 

10 kV/cm 

20 kV/cm 
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It can be seen in Figure 4.2 that the absorption peak shifts with applied bias due to 

the linear Stark effect in the step quantum well. However, the bandwidth of the 

absorption peak remains nearly the same. In order to achieve tunable bandwidth, a two 

step quantum well was arranged as shown in Figure 4.3. 

Figure 4.3 Final design of the asymmetric quantum well structure. 

 

In this case, under a given bias the absorption peaks of the two wells move in 

opposite directions. Figure 4.4 shows the calculated absorption coefficient of the 

combined structure as a function of photon energy for a set of bias voltages. 
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Figure 4.4 Calculated absorption coefficients for the combined step quantum well. 

 

It can clearly be seen that the bandwidth increases as the bias increases. At 10 

/kV cm , the bandwidth is nearly doubled. For higher electric fields, the absorption 

coefficient near the center drops due to a large shift of the two peaks. The details of the 

layer structure needed to fabricate the tunable bandwidth quantum well detector are 

shown in Table 4.2. 
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Layer  
and Thickness Molar Fraction Layer m* (kg) Eg (eV) 

AlGaAs (barrier) 
5nm  0.32 Al0.32Ga0.68As 0.0814m0 1.8230 

AlGaAs (step)  
7nm  0.25 Al0.25Ga0.75As 0.0778m0 1.7357 

GaAs 
4.8nm  -- GaAs 0.067m0 1.4240 

AlGaAs (barrier) 
 5nm  0.32 Al0.32Ga0.68As 0.0814m0 1.8230 

GaAs 
4.8 nm  -- GaAs 0.067m0 1.4240 

AlGaAs (step) 
 7nm  0.25 Al0.25Ga0.75As 0.0778m0 1.7357 

AlGaAs (barrier) 
5nm  0.32 Al0.32Ga0.68As 0.0814m0 1.8230 

Table 4.2 The layered structure of a tunable bandwidth step quantum well detector. 
 

In summary, the design of a step quantum well structure for tunable bandwidth 

detection was introduced. The tunability of the detector by applying a bias to the quantum 

structure was also demonstrated.  
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V. CONCLUSION 

The transfer matrix method was derived, and energy levels and wavefunctions for 

an asymmetric arbitrary potential well were calculated. Intersubband transition selection 

rules and their effect on the design process were also discussed. The absorption 

coefficient, which is also important in the design of a quantum well, was calculated for 

both symmetric and asymmetric wells. The “staircase” potential method was used to 

present both the effects of an external bias and the shift in the detection wavelength due 

to the various applied external electric fields across the detector. External bias and its 

effects on the quantum wells, energy levels, and absorption coefficients were explained in 

detail. The validity of the program was demonstrated through comparison with 

experimental data and the best possible design of the step quantum well structure for 

broadband detection was found. 

A quantum well structure having a broadband detection capability was designed 

using two step quantum well structures arranged opposite to each other. This kind of 

structure allowed both blue and red Stark shifts of the transition energy producing a 

tunable bandwidth. The calculated absorption spectral bandwidth as a function of the 

applied bias shows that the peak width can be varied from 1.27 mµ  to 2.17 mµ , which 

is twice the bandwidth at zero bias. 

Finally, the analysis indicates the possibility of fabricating a tunable bandwidth 

infrared detector using asymmetric quantum wells. 
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APPENDIX. [SELECTED PROGRAMS] 

%THIS PROGRAM FINDS BOUND ENERGY LEVELS IN ANY KIND OF STEP WELL 
%by ATAKAN KONUKBAY © 2002 
clear all,clc,close all;  
global N x E1 h Ein v 
N=input('Enter the number layers> '); %ENTER 1 FOR SQUARE,2 FOR STEP QUANTUM WELL 
 
e=1.602e -19; %Coulomb  
h=197.33e-9; %Planck's Constant      
 
%MOLAR RATIOS (ENTER VALUES AS .35)  
XX(1)=input('Enter the percentage of Al in region   I >');  
XX(2)=input('Enter the percentage of Al in region  II >'); 
XX(3)=input('Enter the percentage of Al in region  IV >');  
 
%THE ENERGY GAP IN EACH REGION OF THE ASYMMETRIC QUANTUM WELL 
Eg1=1.424+1.247*XX(1);    %AlxGa(1-x)As  
Eg2=1.424+1.247*XX(2);    %AlxGa(1-x)As  
Eg3=1.424;                           %GaAs 
Eg4=1.424+1.247*XX(1);    %AlxGa(1-x)As 
  
%EFFECTIVE MASSES 
M=.511e6; 
m(1)=1/((XX(1)/(0.15*M))+((1-XX(1))/(0.067*M))); 
m(2)=1/((XX(2)/(0.15*M))+((1-XX(2))/(0.067*M))); 
m(3)=0.067*M; 
m(4)=1/((XX(3)/(0.15*M))+((1-XX(3))/(0.067*M))); 
  
%POTENTIAL IN CONDUCTION BAND 
v(1)=0.6*(Eg1-Eg3);       
v(2)=0.6*(Eg2-Eg3);       %Set origin @ 0 
v(3)=0;                             %.6*(Eg3-Eg2); 
v(4)=0.6*(Eg1-Eg3);  
%****** 
 
a=input('Enter the width from 0->a in Angstrom> '); 
b=input('Enter the width from a->b in Angstrom> '); 
 
x=[0 a a+b]*1e-10; 
 
%****** 
 
E=0.0001; 
Ein=input('Enter the energy  (eV)> ');   
Efin=input('Enter the external E field (1e6 V/m)> '); %ENTER AS 1,2…ETC. 
El_=Ein*1e4; 
    while E<=Ein; 
        for d=1:El_ 
            T=1; 
            fo r n = 1:N+1 
            k(n)=sqrt((2*m(n))*(E-v(n))/((h^2))); 
            k(n+1)=sqrt((2*m(n+1))*(E-v(n+1))/((h^2)));  
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            A(n)=(exp(i*(x(n)*(k(n)-k(n+1)))))*((k(n+1)*(m(n)))+(k(n))*(m(n+1)))/(2*(k(n+1))*(m(n)));  
            B(n)=(exp(-(i*(x(n)*(k(n+1)+k(n))))))*((k(n+1)*(m(n)))-(k(n))*(m(n+1)))/(2*(k(n+1))*(m(n)));  
            C(n)=(exp(i*(x(n)*(k(n)+k(n+1)))))*((k(n+1)*(m(n)))-(k(n))*(m(n+1)))/(2*(k(n+1))*(m(n)));  
            D(n)=(exp(-(i*(x(n)*(k(n)-k(n+1))))))*((k(n+1)*(m(n)))+(k(n))*(m(n+1)))/(2*(k(n+1))*(m(n)));  
             
            MM(n)={[A(n) B(n);C(n) D(n)]}; 
            end 
     
            ZZ=1; %Unit matrix 
                for n=1:N+1; 
                    ZZ=MM{n}*ZZ; 
                end 
             M22=real(ZZ(2,2));  
              
             TT(d)={[T*M22,E]}; 
 
             Tt(d,:)=TT{d}; 
             E=E+.0001; 
        end              
    end 
 
    zz=1; 
    for z=1:El_-1 
    tt1(z)=Tt(z,1); 
    tt2(z+1)=Tt(z+1,1); 
    ttm=tt1(z)*tt2(z+1); 
            if  ttm<0 
            E(zz)=[Tt(z,2)]; 
            zz=zz+1; 
 
        end 
    end 
 
end 
clc 
MLDRAWFINE 

************** 

%MLDRAWFINE 
%THIS PROGRAM DRAWS THE SHAPE OF THE QUANTUM WELL & DIVIDES THE WIDTH OF 
THE STRUCTURE INTO MANY STEPS 
%by ATAKAN KONUKBAY © 2002 
 
clc; 
e=1.602e-19;%Coulomb  
Edp=Efin;   %Bias 
delta=1e-10; 
 
X{1,1}=(x(1)-50e-10):delta:x(1); 
for n=2:N+1 
X{1,n}=x(n-1):delta:x(n); 
end 
X{1,n+1}=x(1,n):delta:(x(1,n)+50e-10); 
 
for n=1:N+2 
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    XL(1,n)=length(X{1,n}); 
    Y{1,n}=(Edp*X{1,n})*1e6;%cnst; 
    YL(1,n)=length(Y{1,n});     
end 
 
 for n=1:N+2 
     lgth=length(Y{n}); 
     Y_{1,n}=[Y{1,n}(1:lgth)]+v(n); 
      
 end 
  
 
x_=[]; 
y__=[]; 
for n=1:N+2 
    x_=union(x_,X{n}); 
    y__=cat(2,y__,Y_{n}); 
     
end 
 
for n=1:N+2 
 hold on; 
 plot(X{1,n},(Y{1,n}+v(1,n))); 
end 
  
 
for n=2:N+2 
   LXf=XL(1,n); 
   LYf=YL(1,n); 
hold on 
  line([X{n-1}(1,XL(1,n -1)),X{n -1}(1,XL(1,n-1))],[Y{n-1}(1,YL(1,n-1))+v(n -1),Y{n}(1,1)+v(n)])  
  hold on 
end 
 
for n=1:length(E) 
    switch N 
    case 1 
    hold on 
 line([x(1),x(2)],[E(n),E(n)],'Color','r') 
 hold on 
case 2 
 if E(n)<v(2) 
     hold on 
 line([x(2),x(3)],[E(n),E(n)],'Color','r') 
 hold on  
else 
 line([x(1),x(3)],[E(n),E(n)],'Color','r') 
end 
end 
end 
 title(sprintf('Quantum Well With External Electric Field  %g 10^6 V/m',Efin));  
 
 for n=1:N+2 
   QA{n}=Y{n}+v(n); 
   L(n)=length(QA{n}); 
end 
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switch N 

case 1 

   AQ=QA{2}; 
   AQ(1)=[]; 
   AQ((L(2)-1))=[]; 
   QA{2}=AQ;  
   v_=[]; 
case 2 
   AQ=QA{2}; 
   AQ(1)=[]; 
   QA{2}=AQ; 
   AQ=QA{3}; 
   AQ(1)=[]; 
    QA{3}=AQ;  
   v_=[]; 
end 
for n=1:N+2; 
       v_=cat(2,v_,QA{n}); 
   end    
   L=length(v_); 
   v1=v(1); 
 
xlabel(sprintf('a = %g nm , b = %g nm',x(2)*1e9,(x(3)-x(2))*1e9)); 
ylabel(sprintf('Energy (eV)',Efin));  
set(findobj(gca,'Type','line','Color',[0 0 1]),... 
    'Color','blue',... 
    'LineWidth',1) 
text(x(3)+28e-10,0+.01,sprintf('%g / %g / %g',XX(1),XX(2),XX(3)),... 
     'HorizontalAlignment','left','FontSize',8) 
for n=1:length(E) 
text(x(3)+1e-10,E(n),sprintf('E%g=%g ev',n,E(n)),... 
     'HorizontalAlignment','left','FontSize',8) 
end 
grid off; 
 
************** 
 
%THIS PROGRAM CALCULATES THE ENERGY LEVELS FOR MULTI STEP WELL 
%by ATAKAN KONUKBAY © 2002 
 
global N v x E1 h Ein 
N=length(x_)-1; 

 

e=1.602e -19; %Coulomb  
h=197.33e-9; %Planck's constant    
 
x=x_; 
%******mass 
m_1(1:XL(1))=m(1); 
m_2(1:(XL(2)-1))=m(2); 
m_3(1:(XL(3)-1))=m(3); 
m_4(1:(XL(4)))=m(4); 
mm=[m_1 m_2 m_3 m_4]; 
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%****** 
v=v_; 
 
E=0.0001; 
Edrw=0; 
Ein=input('Enter the energy level (eV)> ');  
Efin=0 
El_=Ein*1e4; 
    while E<=Ein; 
        for d=1:El_ 
            T=1; 
            for n = 1:N+1 
            k(n)=sqrt((2*mm(n))*(E-v(n))/((h^2)));  
            k(n+1)=sqrt((2*mm(n+1))*(E-v(n+1))/((h^2))); 
             
            A(n)=(exp(i*(x(n)*(k(n)-k(n+1)))))*((k(n+1)*(mm(n)))+(k(n))*(mm(n+1)))/(2*(k(n+1))*(mm(n)));  
            B(n)=(exp(-(i*(x(n)*(k(n+1)+k(n))))))*((k(n+1)*(mm(n)))-
(k(n))*(mm(n+1)))/(2*(k(n+1))*(mm(n)));  
            C(n)=(exp(i*(x(n)*(k(n)+k(n+1)))))*((k(n+1)*(mm(n)))-(k(n))*(mm(n+1)))/(2*(k(n+1))*(mm(n)));  
            D(n)=(exp(-(i*(x(n)*(k(n)-
k(n+1))))))*((k(n+1)*(mm(n)))+(k(n))*(mm(n+1)))/(2*(k(n+1))*(mm(n))); 
             
            MM(n)={[A(n) B(n);C(n) D(n)]}; 
            end 
     
            ZZ=1; %Unit matrix 
                for n=1:N+1; 
                    ZZ=MM{n}*ZZ; 
                end 
             M22=real(ZZ(2,2));  
              
             TT(d)={[T*M22,E]}; 
            Tt(d,:)=TT{d}; 
            E=E+.0001; 
        end              
    end 
 
    zz=1; 
  
    for z=1:El_-1 
    tt1(z)=Tt(z,1); 
    tt2(z+1)=Tt(z+1,1); 
    ttm=tt1(z)*tt2(z+1); 
            if  ttm<0 
            E(zz)=[Tt(z,2)]; 
            Edrw(zz)=E(zz)+.001; 
          
            zz=zz+1; 
 
        end 
    end 
 
end 
 
************** 
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%THIS PROGRAM CALCULATES THE ALPHA FOR BOUND TO CONTINUUM TRANSITIONS 
%by ATAKAN KONUKBAY © 2002 
 
clc,close 
e=1.602e -19;   %C 
Nd=1e18/1e-6;   %1/m3 
hbar=1.055e -34;   %J.s 
EoE=8.85e-12*sqrt(13);  %F/m 
c=3e8   %m/s 
 
ENG=v(1)+.0001:.0001:v(1)+.02;%-(E(2)-E(1)):.001:2*((E(2)-E(1))); 
 
Alpha=Nd*e^2*hbar^2*sqrt((2*m(1)*9.11e-31/.511e6)./((((ENG-E(1)).*e).^2).*((ENG-
v(1)).*e)))./(2*((m(3)*9.11e-31/.511e6)^2)*EoE*c)*AvXRegBC.^2 
 
plot(ENG,Alpha/1e2) 
grid on 
xlabel('h\prime\omega  [eV]') 
ylabel('Absorption [cm^{-1}]') 
title('Bound to Continuum Absorption') 
 
************** 
 
%THIS PROGRAM CALCULATES THE ALPHA FOR BOUND TO BOUND TRANSITIONS 
%by ATAKAN KONUKBA Y © 2002 
 
clc,close 
Nd=1e18/1e-6 %1/m3 
e=1.602e -19; %C 
hbar=1.055e -34 %J.s 
T=20e-3*e/2 %J 
EoE=8.85e-12*sqrt(13); %F/m 
c=3e8 %m/s 
 
HW=E(1)+.0001:.0001:E(2); 
G=T./((((E(2)-E(1)-HW)*e).^2)+((T)^2)); 
CB_B=(Nd*(e^2)*(hbar^3))/(((m(3)*9.11e-31/.511e6)^2)*EoE*c); 
 
Alpha=(CB_B.*G.*AvXRegMB_B^2)./(HW.*e) 
 
plot(HW,Alpha/1e2) 
grid on 
xlabel('h\prime\omega  [eV]') 
ylabel('Absorption [cm^{-1}]') 
title('Bound to Bound Absorption') 
 
************** 
 
%THIS PROGRAM CALCULATES THE WAVEFUNCTION FOR MULTISTEP WELL 
%by ATAKAN KONUKBAY © 2002 
 
clc; 
figure; 
delta=1e-10; 
 
trans=MM; 
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trs=MM; 
for n=2:N+1 
    trans{1,n}=trs{1,n}*trans{1,n-1}; 
end 
 
A(1,1)=0; 
B(1,1)=1; 
for n=1:N+1 
wavtrans=trans{1,n}; 
A(1,n+1)=wavtrans(1,2)*B(1,1); 
B(1,n+1)=wavtrans(2,2)*B(1,1); 
end 
A(1,1)=0; 
B(1,1)=1; 
B(1,(XL(1)+XL(2)+XL(3))-1:n+1)=0; 
 
X{1,1}=-x(2):delta:x(1); 
for n=2:N+1 
X{1,n}=x(n-1):delta:x(n); 
end 
X{1,n+1}=x(1,n):delta:(x(1,n)+(x(1,n)-x(1,n-1))); 
 
TotalIntegral=0; 
for n=1:N+2 
W{1,n}=A(1,n)*exp(i*k(1,n)*X{1,n})+B(1,n)*exp(-(i*k(1,n)*X{1,n}));  
 
%%%***for the wave used in calculating the oscillation with -B parameter  
W_BC{1,n}=A(1,n)*exp(i*k(1,n)*X{1,n})-B(1,n)*exp(-(i*k(1,n)*X{1,n})); 
%%%*** 
 
W_{1,n}=conj(W{1,n}); 
integr{1,n}=(W{1,n}.*W_{1,n})*delta; 
integregn{1,n}=sum(integr{1,n}); 
TotalIntegral=integregn{1,n}+TotalIntegral; 
end 
 
b1 = 1/(sqrt(TotalIntegral)); 
normwave=0; 
for n=1:N+2; 
WavReal{1,n}=b1*W{1,n}; 
 
%%%***Now multiplying with normalization factor to get the wave 
WavRealBC{1,n}=b1*W_BC{1,n}; 
%%%*** 
 
WR_{1,n}=conj(WavReal{1,n}); 
Integ{1,n}=(WavReal{1,n}.*WR_{1,n})*delta; 
Integral{1,n}=sum(Integ{1,n}); 
normwave=Integral{1,n}+normwave; 
end 
for n=1:N+2 
 hold on; 
 plot(X{1,n},WavReal{1,n}); 
 hold on; 
end 
************** 



50 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



51 

LIST OF REFERENCES 

Adachi, S., GaAs and Related Materials, pp. 237-238, World Scientific, 1994 
 
Andersson, T. G. and W. Chen, “Intersubband transitions for differently shaped quantum 
wells under an applied electric field”, Appl. Phys. Lett., 60, pp. 1591-1593, 1992 
 
Brennan K. F. and C. J. Summers, “Transfer matrix approach to the analysis of an 
arbitraray quantum well structure in an electric field”, Appl. Phys. Lett., 55, pp. 1082-
1084, 1989. 
 
Choi, K.K., The Physics of Quantum Well Infrared Photodetectors, pp. 131-133, World 
Scientific, 1997 
 
Coon, D.D. and R.P.G. Karunasiri, “New mode of IR detection using quantum wells”, 
Appl. Phys. Lett., 45, pp.649-651, 1984. 
 
Coon, D.D. and R.P.G. Karunasiri and L.Z. Liu, “Narrow band infrared detection in 
multiquantum well structures”, Appl. Phys. Lett., 47, pp.289-291, 1985. 
 
Esaki, L. and R. Tsu, IBM Research Note, RC-2418, 1969. 
 
Hasnain, G., B.F. Levine, D.L. Sivco and A.Y. Cho, “Mid- infrared detectors in the 3-5 
µm band using bound to continuum state absorption in InGaAs/InAlAs multiquantum 
well structures”, Appl. Phys. Lett., 56, pp. 770-772, 1989. 
 
Hutchings, D. C., “Transfer matrix approach to the analysis of an arbitrary quantum well 
structure in an electric field”, Appl. Phys. Lett., 55, pp. 1082-1084, 1989. 
 
Gravé, I., A. Shakouri, N. Kruze and A. Yariv, “Voltage-controlled tunable 
GaAs/AlGaAs multistack quantum well infrared detector”, Appl. Phys. Lett., 60, pp. 
2362-2364, 1992. 
 
Gunapala, S.D., J.K. Liu, M. Sundaram, S.V. Bandara, C.A. Shott, T. Hoelter, P.D. 
Maker and R.E. Muller, “Long Wavelength Quantum Well Infrared Photodetector 
(QWIP) Research at Jet Propulsion Laboratory”, Proc. SPIE, 2744, pp. 722-730, 1996. 
 
Levine, B.F. K.K. Choi, C.G. Bethea, J. Walker and R.J. Malik, “New 10 µm infrared 
detector using intersubband absorption in resonant tunneling GaAlAs superlattices”, 
Appl. Phys. Lett., 50, pp. 1092-1094, 1987. 
 
Levine, B. F., C. G. Bethea, K. K. Choi, J. Walker, and R. J. Malik, “Bound-to-extended 
state absorption GaAs superlattice transport infrared detectors”, Jour. Appl. Phys., 64, pp. 
1591-1593, 1988. 
 



52 

Levine, B.F., A. Zussman, S.D. Gunapala, M.T. Asom, J.M. Kuo and W.S. Hobson, 
“Photoexcited escape probability, optical gain, and noise in quantum well infrared 
photodetectors”, Jour. Appl. Phys., 72, pp. 4429-4443, 1991. 
 
Levine B. F. “Quantum-well infrared photodetectors”, Jour. Appl. Phys., 74, pp. R1-R81, 
1993. 
 
Meyer, J. R. and Vurguftman I., “Band parameters for III-IV compound semiconductors 
and their alloys”, Jour. Appl. Phys., 89, pp. 5855-5856, 2001. 
 
Martinet, E., F. Luc, E. Rosencher, Ph. Bois, and S. Delaitre, “Electrical tunability of 
infrared detectors using compositionally asymmetric GaAs/AlGaAs multiquantum 
wells”, Appl. Phys., 60, pp. 92-60, 1992. 
 
Mii, Y. J, R. P. G. Karunasiri, K. L. Wang, M. Chen, and P. F. Yuh, “Bound-to-extended 
state absorption GaAs superlattice transport infrared detectors”, Jour. Appl. Phys., 64, pp. 
1591-1593, 1988. 
 
Mii, Y. J., K. L. Wang, R. P. G. Karunasiri, and P. F. Yuh, “Observation of large 
oscillator strengths for both 1 2 and 1 3 intersubband transitions of step quantum 
wells”, Appl. Phys. Lett., 56, pp. 1046-1048, 1990. 
 
Robinett, Richard W., Quantum Mechanics, pp. 115, Oxford University Press, 1997 
 
Singh, J., Physics of Semiconductors and Their Heterostructures, pp. 184-185, McGraw-
Hill Book Co., 1993. 
 
Smith, J.S., L.C. Chiu, S Margalit, A. Yariv and A.Y Cho, “A new infrared detector using 
electron emission from multiple quantum wells”, J. Vac. Sci. Tech. B, 1, pp. 376-378, 
1983. 
 
Wang, K.L. and P.G. Yuh, “Theory and Applications of Band-Aligned Superlattices”, 
IEEE Jour. Quan. Electron., 25, pp. 12-19, 1989. 
 
Weisbuch, C, B. Vinter, “Quantum well semiconductor structures: Fundamentals and 
applications”, pp. 13-14, 1989. 
 
West, L.C. and S.J. Eglash, “First observation of an extremely large-dipole infrared 
transition within the conduction band of a GaAs quantum well”, Appl. Phys. Lett., 46, pp. 
1156-1158, 1985. 
 
Yariv, A., Optical Electronics in Modern Communications, pp. 162, Oxford University 
Press, 1997 
 



53 

Yu, L.S. and S.S. Li, “A metal grating coupled bound-to-miniband and transition GaAs 
multiquantum well/superlattice infrared detector”, Appl. Phys. Lett., 59, pp. 1332-1334, 
1991. 
 
Yuh, P.F. and K.L. Wang, “Optical transitions in a step quantum well”, Jour. Appl. Phys., 
65, pp. 4377-4381, 1989. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



55 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Chairman (Code PH) 
Department of Physics 
Naval Postgradua te School  
Monterey, California 
 

4. Gamani Karunasiri  
Naval Postgraduate School 
Monterey, California 
 

5. James Luscombe  
Naval Postgraduate School 
Monterey, California  
 

6. Kara Harp Okulu Komutanligi 
 06100 Bakanliklar 
 Ankara, Turkey 
 
7. Atakan Konukbay 

7nci C. 20nci S. No:8/8 
 06500 Bahcelievler  
 Ankara, Turkey  

 


